wounds

Dubious Quick Kill - Part Four

WOUNDS TO THE HEART

Because exsanguination is the leading and most frequent cause of death in stabbing and incising wounds, it is not unreasonable to direct our attention initially to wounds to the cardiovascular system and further, to consider the evidence provided by the medical records and coroners reports of the current era. Let us first begin with a brief review of human anatomy. In an adult, the heart is approximately twelve centimeters long, eight to nine centimeters wide at its widest point, and some six centimeters thick. It is encased in a membranous sack, the pericardium, and rests on the upper surface of the diaphragm, between the lower portions of the lungs and behind the sternum. The organ is divided into four chambers: the left and right atria and the left and right ventricles. It is comprised almost entirely of muscle, and serves a vital function as a pumping mechanism to distribute blood throughout the body. It is unattached to the adjacent organs, but is held in place in the chest cavity, suspended by the pericardium and by continuity with the major blood vessels. The muscular walls of the heart are supplied with blood by the the right and the left coronary arteries, each of which bifurcates into a series of subdivisions.

...stab wounds, similar to those that might be inflicted by a thrust with a sword with a narrow, pointed blade may leave a mortally wounded victim capable of surprisingly athletic endeavors.

Because the heart is a vital organ, it is generally thought that a serious injury to the heart will result in instant death. Consequently, it is not unreasonable to suppose that the duelist expected a thrust to his adversary's heart to disable him immediately. While swordplay done in earnest is now a thing of the past, a wealth of information regarding stab wounds to the heart has been accumulated in recent times by the practitioners of modern forensic medicine. Many of these wounds have been inflicted with instruments very much like the blades of rapiers, sabres, and smallswords and the means by which such wounds have been treated, combined with assessments of the injuries through the sophisticated discipline of forensic medicine, reveal some surprising truths with which many duelists most certainly had to deal.

While a stab wound to the heart is a grave matter, numerous instances of penetrating wounds to this organ have been documented in which victims have demonstrated a surprising ability to remain physically active. In 1896 a case was reported in which a twenty-four year old man was stabbed in the heart. Despite a wound to the left ventricle which severed a coronary artery, the victim not only remained conscious, but was also able to walk home. Much later, in 1936, a paper was presented to the American Association of Thoracic Surgery in which thirteen cases of stab wounds to the heart were cited. Of these, four victims were said to have collapsed immediately. Four others, although incapacitated, remained conscious and alert for from thirty minutes to several hours. The remaining five victims, thirty-eight per cent of the total, remained active: one walking approximately twenty-three meters and another running three blocks. Yet another victim remained active for approximately ten minutes after having been stabbed in the heart with an ice pick, and two managed to walk to a medical facility for help. In another instance a report cites an impressive case of a man stabbed in the left ventricle. Despite a wound 1.3 centimeters in length, the victim was able to continue routine activity for some time and lived a total of four days before expiring. In 1961, a survey conducted by Spitz, Petty and Russell included seven victims stabbed in various regions of the heart. While none of these people expired immediately, some were quickly incapacitated. Five were not, however, and one victim, despite a 2 centimeter slit-like "laceration" located in the left ventricle, managed to walk a full city block. After arming himself with a broken beer bottle, the victim finally collapsed while in the act of attempting to re-engage the individual who stabbed him.

The amount of time elapsing between a stab wound to the heart and total incapacitation of the victim is dependent upon the nature of the wound and which structures of the heart are compromised. In the light of the cases cited in the preceding paragraphs, one may expect that a penetrating wound to the left ventricle, such as that which would be inflicted by a smallsword, may not necessarily bring a combat to a sudden conclusion. Blood in this chamber of the heart, at the end of ventricular contraction (end-systole), may reach pressures as high as one hundred twenty millimeters of mercury or more, especially during combat, and one might reasonably expect blood under such pressure to escape readily through a breach in the ventricular wall. The walls of this chamber are comprised almost entirely of muscle tissue, however, and are exceptionally thick. As a consequence, the left ventricular wall has the potential to seal itself partially through the contraction of the muscle tissue immediately surrounding the site of the wound. While the end-systolic pressure in the right ventricle normally amounts to only eighteen percent that of the left, wounds to the right ventricle are far more likely to be quickly fatal because the thickness of this ventricular wall is only a third that of the left ventricle and is, consequently, less able to close a wound.

With respect to penetrating (stabbing) wounds to the heart the location, depth of penetration, blade width, and the presence or absence of cutting edges are important factors influencing a wounded duelist's ability to continue a combat. Large cuts that transect the heart may be expected to result in swift incapacitation due to rapid exsanguination, and immediate loss of pressure, but stab wounds, similar to those that might be inflicted by a thrust with a sword with a narrow, pointed blade may leave a mortally wounded victim capable of surprisingly athletic endeavors. Knight cites a case of one individual who, stabbed "through" the heart, was still able to run over 400 meters before he collapsed. Yet two more striking cases are also reported of victims who survived wounds to the heart, one of which is described as, "a through-and-through stab wound of the left ventricle that transfixed the heart from front to back."

WOUNDS TO THE MAJOR THORACIC BLOOD VESSELS

The vital area located in the center of the chest is not occupied by the heart alone. The large thoracic blood vessels converge with the heart in such a way as to present an area nearly equal in size to that presented by the heart. Consequently, a sword-thrust that penetrates the chest but fails to find the heart may nevertheless pierce or incise one or more of these large vessels.

Normally, blood pressure in the major arteries located in the chest (thorax) averages approximately one hundred millimeters of mercury, with a maximum pressure of some one hundred twenty millimeters at end-systole. Subdivisions of the aorta greater than three millimeters in diameter offer little vascular resistance. Consequently, the average blood pressure in these vessels is nearly the same. Since the thoracic arteries confine blood under considerable pressure, and because the walls of these vessels are relatively thin, compared to the walls of the ventricles, punctures or cuts in these vessels may allow blood to escape quite rapidly, depending on the size of the opening. The major thoracic arteries then, are more vulnerable to stabbing wounds than are the ventricles of the heart. While a good deal smaller in diameter, a puncture or severing of the coronary arteries, because they supply blood to the walls of the heart's ventricles, may also result in rapid incapacitation of a duelist. Forensic pathologists Dominick and Vincent Di Maio point out that especially vulnerable is the left anterior descending coronary artery which supplies the anterior wall of the left ventricle. Stabbing wounds which transect this small vessel may be expected to result in sudden death.

Nevertheless, cases have been reported in which stabbing victims, whose thoracic arteries were penetrated, remained physically active for a surprisingly long period of time. An example may be found in the case of a twenty-three year old man who was stabbed in the chest with a kitchen knife. At autopsy a wound tract was disclosed that penetrated both the aorta and the left ventricle. Blood issuing from these wounds into the chest cavity amounted to a volume of two liters. Despite the serious nature of his wounds, the victim nevertheless managed to walk more than 100 meters before collapsing and remained alive until shortly after he had been taken to the hospital. Another example is that of a twenty-five year old man whose subclavian artery and vein were severed by a thrust delivered by a kitchen knife. Losing a total of three liters of blood, he was able to run a distance of four city blocks before finally collapsing.

next time, more wounds!

Dubious Quick Kill - Part Three

How do we reconcile fencing theory with the anecdotes passed down through history? Can we trust what was reported by seconds and the principals who survived? How credible is the "evidence?" Take for example the case of the duel fought in 1613 between the Earl of Dorset and Lord Edward Bruce. According to the Earl's account, he received a rapier-thrust in the right nipple which passed "level through my body, and almost to my back." Seemingly unaffected, the Earl remained engaged in the combat for some time. The duel continued with Dorset going on to lose a finger while attempting to disarm his adversary manually. Locked in close quarters, the two struggling combatants ultimately ran out of breath. According to Dorset's account, they paused briefly to recover, and while catching their wind, considered proposals to release each other's blades. Failing to reach an agreement on exactly how this might be done, the seriously wounded Dorset finally managed to free his blade from his opponent's grasp and ultimately ran Lord Bruce through with two separate thrusts. Although Dorset had received what appears to have been a grievous wound that, in those days, ought to have been mortal, he not only remained active long enough to dispatch his adversary, but without the aid of antibiotics and emergency surgery, also managed to live another thirty-nine years. Never happen in a thousand years? Maybe. After all, Dorset himself told the story.

where and how might one strike to take the adversary immediately out of the combat?

THE DUBIOUS QUICK KILL

In his treatise entitled Paradoxes of Defence, George Silver cautions that one should not expect the instant incapacitation of one's adversary from a rapier thrust. In fact, he claims to have known of a duel in which a combatant who was wounded some nine or ten times by thrusts through the body and the limbs, nevertheless managed to remain in the combat long enough to kill his adversary. Silver, of course, had no love for the rapier and the new style of swordplay which was soon to supersede the dying 'old school' of broadsword-play of which Silver and his colleagues were the last members. Many of his objections to rapier-play, including his proof that the cut is swifter than the thrust, do not withstand the test of logic, so one may be inclined to give him less credit than that to which he might otherwise be due. Numerous examples taken from other accounts, however, lend much support to Silver's concern for the danger posed by the wounded adversary.

During the reign of the French king, Henry the IV, two experienced duelists, Lagarde and Bazanez, fought a duel in which the later received an unspecified number of thrusts which "entered" the body. Despite having lost a good deal of blood, Bazanez nevertheless managed to wrestle his adversary to the ground, whereupon he proceeded to inflict some fourteen stab wounds with his dagger to an area extending from his opponent's neck to his navel. Lagarde meanwhile, entertained himself by biting off a portion of his adversary's chin. Using the pommel of his weapon, ended the affair by fracturing Bazanez's skull. History concludes, saying that neither combatant managed to inflict any "serious" injury, and that both recovered from the ordeal. One could hardly be criticized for believing this story to be anything more than a fiction.

While the previous tale seems amazing enough, hardly anyone can tell a story more incredible than that witnessed by R. Deerhurst. Two duelists, identified only as "His Grace, the Duke of B " and "Lord B ", after an exchange of exceptionally cordial letters of challenge met in the early morning to conduct their affair with pistols and swords. The combat began with a pistol ball inflicting a slight wound to the Duke's thumb. A second firing was exchanged in which Lord B was then wounded slightly. Each then immediately drew his sword and rushed upon the other with reckless ferocity. After an exchange of only one or two thrusts, the two became locked corps a corps. Struggling to free themselves by "repeated wrenches," they finally separated enough to allow the Duke to deliver a thrust which entered the inside of Lord B 's sword arm and exited the outside of the arm at the elbow. Incredible as it may seem, his Lordship was still able to manage his sword and eventually drove home a thrust just above Duke B 's right nipple. Transfixed on his Lordship's blade, the Duke nevertheless continued, attempting repeatedly to direct a thrust at his Lordship's throat. With his weapon fixed in His Grace's chest, Lord B now had no means of defense other than his free arm and hand. Attempting to grasp the hostile blade, he lost two fingers and mutilated the remainder. Finally, the mortally wounded Duke penetrated the bloody parries of Lord B's hand with a thrust just below Lord B 's heart.

In the Hollywood swashbucklers this scene might well have have ended at this point, if not long before, but real life often seems to have a more incredible, and certainly in this case, more romantic outcome. Locked together at close quarters and unable to withdraw their weapons from each other's bodies for another thrust, the two stood embracing each other in a death grip. At this point the seconds, attempting to intercede, begged the pair to stop. Neither combatant would agree, however, and there they both remained, each transfixed upon the blade of the other until, due to extensive blood loss, his Lordship finally collapsed. In doing so, he withdrew his sword from the Duke's body and, staggering briefly, fell upon his weapon, breaking the blade in two. A moment later, the "victorious" Duke deliberately snapped his own blade and, with a sigh, fell dead upon the corpse of his adversary.

Numerous similar accounts begin to make a case the prudent swordsman cannot afford to ignore. It would appear that delivering a thrust or cut to an opponent, without falling prey to his own blade in turn, may not be so very simple and easy a thing. If one is skillful (or fortunate) enough to accomplish this feat, how long after inflicting a wound with a rapier, sabre, or smallsword can one's adversary continue to pose a threat? Does the type of wound have any meaningful effect on the length of time during which a stricken foe may continue to deliver a killing cut or thrust? To prevent the opponent from executing a counterattack, delivering a riposte or renewing an attack, where and how might one strike to take the adversary immediately out of the combat?

DYNAMICS OF STABBING AND INCISING WOUNDS

Death from stabbing and incising ("cutting" or "slashing") wounds is mainly brought about through five mechanisms: massive hemorrhage (exsanguination), air in the bloodstream (air embolism), suffocation (asphyxia), air in the chest cavity (pneumothorax), and infection. Of these, exsanguination is the most common, with hemorrhaging confined principally to the body cavity because stabbing wounds tend to close after the weapon is withdrawn. The amount of blood loss necessary to disable totally an individual varies widely and may range from as little as one-half to as much as three liters.

To reach a vital area it is first necessary to pass the blade through the body's external covering and whatever else lies between, and with regard to techniques in swordsmanship, an important consideration is the degree of force required to pass through intervening structures in order to reach vital structures with a sword-thrust or cut. In France, in 1892, this issue was raised during a trial conducted as a consequence of a duel fought between the Marquis de Mores and a Captain Meyer. The question arose on account of an accusation that the weapons used in the duel were "too heavy." While two physicians, Drs. Faure and Paquelin, testified that it did not require great strength to inflict a wound similar to that which took Captain Meyer's life, there was some difference of opinion expressed by a number of fencing masters called to testify on the matter of acceptable weights of weapons, and the force required to employ them in the delivery of a fatal thrust.

Even today, prosecutors trying homicide cases involving death by stabbing will sometimes attempt to convince juries that a deeply penetrating stab wound serves as an indicator of murderous intent by virtue of the great force required to inflict such wounds. It is generally accepted today among experts of forensic medicine, however, that the force requisite to inflict even a deeply penetrating stab wound is minimal. This opinion would seem to be supported by the experience of a stage actor who inadvertently stabbed a colleague to death during a stage performance of Shakespeare's play, Romeo and Juliet. The unlucky young man delivered a thrust at the very moment his vision was inadvertently obscured by a member of the cast. Although he claimed to have felt no resistance, a post mortem examination revealed that he had penetrated the chest of the victim to a depth of eighteen centimeters.

Except for bone or cartilage which has become ossified, it is the skin that offers the greatest resistance to the point of a blade. In fact, once the skin is penetrated, a blade may pass, even through costal cartilage, with disquieting ease. Generally, of the factors governing the ease of entry, the two most important are the sharpness of the tip of the blade and the velocity with which it contacts the skin. While the mass of the weapon is a factor in penetration, the velocity of the blade at the moment of contact is of greater importance, since the force at impact is directly proportional to the square of the velocity of the thrust.

Unlike injuries inflicted with pointed weapons, the depth of cutting wounds, produced by the edges of weapons like the sabre or rapier, is governed by a somewhat different set of dynamics which include the radial velocity of the blade at impact, its mass, the proficiency with which the blade is drawn across the body upon contact, and the distance over which the force of the cut is distributed. The greatest depth of penetration in many of these wounds is found at the site where, with maximum force, the blade first makes contact. As the edge is pushed or drawn, the force of the cut dissipates and the blade tends to rise out of the wound as it traverses the body. In the case of cutting wounds directed to the chest, the total force required to reach the interior of the chest is greater than that for a point thrust, not only because the force of the stroke is distributed across the length of the cut, but also because of the likelihood that the blade will encounter greater resistance afforded by the underlying ribs and the breastbone (sternum).

next time, Wounds to the Heart...