death

Dubious Quick Kill - Part Five

WOUNDS TO THE MAJOR BLOOD VESSELS OF THE NECK

The aortic arch branches into arteries that service the upper body, including the head. Of these, the left and right common carotid arteries are of significant interest with regard to dueling practice because these vessels supply the larger share of blood to the brain and because they extend unprotected, in the neck, on either side of the windpipe(trachea). While these arteries are not externally visible, one can understand why a stroke delivered to the neck with an edged weapon such as a sabre, or thrust with an edged smallsword or rapier, would seem to be an effective means of incapacitating an adversary. Certainly, the severing of a common carotid artery will immediately terminate a large portion of the blood supply to the brain. Nevertheless, the victim of such a wound may remain conscious for from fifteen to as many as thirty seconds; a more than ample amount of time for a dying swordsman to execute a number of cuts, thrusts and parries.

In addition to the carotid arteries, the neck also encompasses the jugular veins, which return blood from the brain, face, and neck to the heart. While the escape of blood under high pressure is a concern for wounds to the vessels of the arterial system, wounds to the jugular veins pose a different problem. By the time blood reaches these vessels, its pressure is nearly zero. In fact, during the inspiratory phase of the respiratory cycle, when contraction of the diaphragm and intercostal muscles creates a negative pressure within the thorax, pressure in the jugular veins also falls below zero. As a consequence, an opening in the jugular vein which communicates with the external environment may allow small bubbles of air to be entrained into the vessel. As the air enters, a bloody froth can be produced which, when drawn into the heart, may render the pumping action inoperative (valve lock). Whereas a severed vein is not usually considered to be as serious an injury as a severed artery, air embolism due to a cut jugular vein may cause a victim, after one or two gasps, to collapse immediately.

...clearly for the duelist hitting before being hit is not at all the same thing as hitting without being hit.

As the neck encompasses the cervical spine, carotid arteries, trachea, and jugular veins in a relatively small space, a sword-thrust to this area would seem very likely to sever or impale a vital structure and disable an adversary almost immediately. And so it was, during the reign of Louis XIII, for one Bussy D'Ambrose who was run through the throat while acting as a second for the Marquis de Beuvron. The chance of combat, however, is a fickle companion to the duelist, as Sir Hatton Cheek discovered in 1609 in his duel with Sir Thomas Dutton. Each, armed with rapier and dagger, met the other on the sands of Calais. On the first pass Cheek directed a dagger thrust to Dutton's throat, close to the trachea, and ran him through. One may imagine with what surprise Cheek found that the wound proved to be entirely ineffective. In fact, despite the seemingly serious nature of his injury, it was Dutton who concluded the combat by running Cheek through the body with his rapier, and then stabbing him in the back with his dagger. If we are surprised at Dutton's ability to continue the combat, it is with horror that we find that Cheek, after having been so grievously wounded, not only failed to drop to the ground, but continued on with the combat, gathering enough strength to rush yet again upon his adversary. The conflict continued until Dutton, noticing that Cheek began to droop on account of massive blood loss, wisely adopted a defensive strategy, keeping his distance until Cheek finally collapsed from loss of blood.

WOUNDS TO THE MAJOR ABDOMINAL BLOOD VESSELS

Within the abdominal cavity are found the abdominal aorta and its two major branches, the common iliac arteries; and their venous counterparts, the inferior vena cava and the common iliac veins. These vessels are large, relatively speaking, and they confine blood under end-systolic pressures similar to those found in the major thoracic arteries. All of these vessels are located in close proximity to the spinal column and lie behind the bulk of the abdominal viscera.

In the present-day United States, wounds delivered by thrusts or cuts from a sword are almost entirely unheard of; knives are by far the most common weapon involved in stabbings. Obviously, the depth to which a knife may penetrate the abdominal cavity is less that that for the blade of a sword. It is important to bear this point in mind with respect to a finding that less than half of all stab wounds do any serious injury to the abdominal viscera. Longer blades might well increase the morbidity and mortality of such injuries.

Wounds to the abdomen which do prove fatal usually involve the large blood vessels and/or the liver, which is a highly vascular organ itself. The rate of blood loss from even a grievously wounded liver is not likely to be sufficient to cause sudden cardiac collapse, however, since the vascular resistance within this organ is very high. Complete transection of the abdominal aorta could be expected to incapacitate a duelist relatively quickly, but some degree of good fortune would be required to introduce the blade in such a way as to impale this relatively narrow structure within the bulk of the abdomen, or draw the blade's edge along the artery's wall to transect it.

A sabre stroke would certainly be an effective means of severing the major abdominal arteries and veins, but because they are located against the vertebral column, the stroke would have to be made with considerable violence in order to pass the blade through the skin, the underlying abdominal muscles, and the viscera situated in front of the vessels. Were such a stroke delivered, violating the integrity of the large vessels would be a moot point in any case since the sudden loss of intra-abdominal pressure and the attendant cardiac return would induce immediate cardiac collapse. For a cutting action to do so much damage the type of sabre would be an important consideration. While a heavy cavalry sabre with a curved blade would have sufficient mass and dynamics to yield the necessary force, a cut delivered to the abdominal wall by the lighter and shorter dueling sabre with a straight rather than a curved edge would likely prove inadequate to the task and could leave the adversary still capable of posing a serious threat.

WOUNDS TO THE BLOOD VESSELS OF THE UPPER LIMBS

Although relatively far removed from the heart, the arteries of the arms are still of sufficiently low vascular resistance to carry blood under pressures similar to those found in the greater thoracic arteries. Of the major arteries of the arm, the brachial artery is the largest and lies along the medial surface of the bone of the upper arm (humerus). As it descends, it progressively courses anteriorly to the crook of the arm, where it is well exposed to a sword-thrust or cut. From the crook of the elbow it divides into the ulnar and radial arteries. Wounds to any of these vessels can be extremely life-threatening, especially if the vessel is only partly severed, since the muscular walls of a completely transected artery will naturally retract and impair the rate of hemorrhage. Incisions in the radial artery are a well-recognized cause of death in suicide victims. Nevertheless, because of their relatively smaller diameters, immediate incapacitation due to blood loss from the severing of these arteries cannot be expected.

The veins of the arm are far more numerous than the major arteries. They are significantly more narrow and intravenous pressures are normally less than ten millimeters of mercury. As a consequence, incisions or even complete transections of these vessels can be expected to result in no immediately serious consequences.

WOUNDS TO THE BLOOD VESSELS OF THE LOWER LIMBS

Much like the arms, the legs each are serviced by one large artery which divides into two major branches. The femoral artery lies in front of the hip joint and descends along the medial surface of the thigh bone, (femur). Unlike the brachial artery, however, the mid and distal portion of the femoral artery is not altogether vulnerable to the blade of the duelist. As it approximates the knee joint it spirals around the femur and passes directly behind the knee in the form of the popliteal artery, which subsequently bifurcates to become the anterior and posterior tibial arteries.

Like the arm, the leg is laced with a complex network of veins. Most of these are relatively narrow and deep and the pressure of blood confined within these vessels is low. The rate of blood flow through these vessels is relatively slow and wounds severing one or more of them cannot be expected to result in consequences of any interest to the duelist.

Cuts or thrusts to the major arteries of the legs can be serious enough to cause death. Nevertheless, an adversary seriously wounded in a femoral artery ought still to be considered an extremely dangerous adversary because blood loss is unlikely to be so rapid as to result in immediate collapse. In the last of the judicial duels fought in France in 1547 between Francois de Vivonne, Lord of Chastaigneraye and Guy de Chabot, the oldest son of the Lord of Jarnac, Chastaigneraye was wounded by cuts to the back of the knee of both legs. Hamstrung, Chastaigneraye lay helpless on the ground while a lengthy exchange of words followed between him and his adversary. Jarnac offered to spare Chastaigneraye if he would admit that his accusations, over which the trial took place, were in error, but Chastaigneraye refused to recant and Jarnac, loth to take his opponents life, pleaded with the attending monarch, Henry II, to intervene and save Chastaigneraye's life. Initially, the king refused to interfere, however. Hemorrhaging uncontrollably from at least one artery, Chastaigneraye remained upon the ground while Jarnac continued to plead back and forth with both Chastaigneraye and the king to end the combat. After Jarnac's third appeal, the king finally interceded, but Chastaigneraye's pride had been mortally wounded. Refusing to allow his wounds to be treated, he finally succumbed after "a little time" from loss of blood.

It is important to note that Chastaigneraye was considered to have been a swordsman of extraordinary skill as well as an excellent wrestler. Following the cutting stroke to his leg, the extended period during which he lay hemorrhaging to death was certainly of sufficient length to have afforded him a number of thrusts, strokes and parries. Had the slash to the backside of his right leg not crippled him, Chastaigneraye might well have been the victor in this combat, severed artery notwithstanding.

SUMMARY

In conclusion, fencing tempo is a vital element of swordsmanship, but clearly for the duelist hitting before being hit is not at all the same thing as hitting without being hit. Exsanguination is the principal mechanism of death caused by stabbing and incising wounds and death by this means is seldom instantaneous. Although stab wounds to the heart are generally imagined to be instantly incapacitating, numerous modern medical case histories indicate that while victims of such wounds may immediately collapse upon being wounded, rapid disability from this type of wound is by no means certain. Many present-day victims of penetrating wounds involving the lungs and the great vessels of the thorax have also demonstrated a remarkable ability to remain physically active minutes to hours after their wounds were inflicted. These cases are consistent with reports of duelists who, subsequent to having been grievously or even mortally wounded through the chest, neck, or abdomen, nevertheless remained actively engaged upon the terrain and fully able to continue long enough to dispatch those who had wounded them.

FIN


Dubious Quick Kill - Part Three

How do we reconcile fencing theory with the anecdotes passed down through history? Can we trust what was reported by seconds and the principals who survived? How credible is the "evidence?" Take for example the case of the duel fought in 1613 between the Earl of Dorset and Lord Edward Bruce. According to the Earl's account, he received a rapier-thrust in the right nipple which passed "level through my body, and almost to my back." Seemingly unaffected, the Earl remained engaged in the combat for some time. The duel continued with Dorset going on to lose a finger while attempting to disarm his adversary manually. Locked in close quarters, the two struggling combatants ultimately ran out of breath. According to Dorset's account, they paused briefly to recover, and while catching their wind, considered proposals to release each other's blades. Failing to reach an agreement on exactly how this might be done, the seriously wounded Dorset finally managed to free his blade from his opponent's grasp and ultimately ran Lord Bruce through with two separate thrusts. Although Dorset had received what appears to have been a grievous wound that, in those days, ought to have been mortal, he not only remained active long enough to dispatch his adversary, but without the aid of antibiotics and emergency surgery, also managed to live another thirty-nine years. Never happen in a thousand years? Maybe. After all, Dorset himself told the story.

where and how might one strike to take the adversary immediately out of the combat?

THE DUBIOUS QUICK KILL

In his treatise entitled Paradoxes of Defence, George Silver cautions that one should not expect the instant incapacitation of one's adversary from a rapier thrust. In fact, he claims to have known of a duel in which a combatant who was wounded some nine or ten times by thrusts through the body and the limbs, nevertheless managed to remain in the combat long enough to kill his adversary. Silver, of course, had no love for the rapier and the new style of swordplay which was soon to supersede the dying 'old school' of broadsword-play of which Silver and his colleagues were the last members. Many of his objections to rapier-play, including his proof that the cut is swifter than the thrust, do not withstand the test of logic, so one may be inclined to give him less credit than that to which he might otherwise be due. Numerous examples taken from other accounts, however, lend much support to Silver's concern for the danger posed by the wounded adversary.

During the reign of the French king, Henry the IV, two experienced duelists, Lagarde and Bazanez, fought a duel in which the later received an unspecified number of thrusts which "entered" the body. Despite having lost a good deal of blood, Bazanez nevertheless managed to wrestle his adversary to the ground, whereupon he proceeded to inflict some fourteen stab wounds with his dagger to an area extending from his opponent's neck to his navel. Lagarde meanwhile, entertained himself by biting off a portion of his adversary's chin. Using the pommel of his weapon, ended the affair by fracturing Bazanez's skull. History concludes, saying that neither combatant managed to inflict any "serious" injury, and that both recovered from the ordeal. One could hardly be criticized for believing this story to be anything more than a fiction.

While the previous tale seems amazing enough, hardly anyone can tell a story more incredible than that witnessed by R. Deerhurst. Two duelists, identified only as "His Grace, the Duke of B " and "Lord B ", after an exchange of exceptionally cordial letters of challenge met in the early morning to conduct their affair with pistols and swords. The combat began with a pistol ball inflicting a slight wound to the Duke's thumb. A second firing was exchanged in which Lord B was then wounded slightly. Each then immediately drew his sword and rushed upon the other with reckless ferocity. After an exchange of only one or two thrusts, the two became locked corps a corps. Struggling to free themselves by "repeated wrenches," they finally separated enough to allow the Duke to deliver a thrust which entered the inside of Lord B 's sword arm and exited the outside of the arm at the elbow. Incredible as it may seem, his Lordship was still able to manage his sword and eventually drove home a thrust just above Duke B 's right nipple. Transfixed on his Lordship's blade, the Duke nevertheless continued, attempting repeatedly to direct a thrust at his Lordship's throat. With his weapon fixed in His Grace's chest, Lord B now had no means of defense other than his free arm and hand. Attempting to grasp the hostile blade, he lost two fingers and mutilated the remainder. Finally, the mortally wounded Duke penetrated the bloody parries of Lord B's hand with a thrust just below Lord B 's heart.

In the Hollywood swashbucklers this scene might well have have ended at this point, if not long before, but real life often seems to have a more incredible, and certainly in this case, more romantic outcome. Locked together at close quarters and unable to withdraw their weapons from each other's bodies for another thrust, the two stood embracing each other in a death grip. At this point the seconds, attempting to intercede, begged the pair to stop. Neither combatant would agree, however, and there they both remained, each transfixed upon the blade of the other until, due to extensive blood loss, his Lordship finally collapsed. In doing so, he withdrew his sword from the Duke's body and, staggering briefly, fell upon his weapon, breaking the blade in two. A moment later, the "victorious" Duke deliberately snapped his own blade and, with a sigh, fell dead upon the corpse of his adversary.

Numerous similar accounts begin to make a case the prudent swordsman cannot afford to ignore. It would appear that delivering a thrust or cut to an opponent, without falling prey to his own blade in turn, may not be so very simple and easy a thing. If one is skillful (or fortunate) enough to accomplish this feat, how long after inflicting a wound with a rapier, sabre, or smallsword can one's adversary continue to pose a threat? Does the type of wound have any meaningful effect on the length of time during which a stricken foe may continue to deliver a killing cut or thrust? To prevent the opponent from executing a counterattack, delivering a riposte or renewing an attack, where and how might one strike to take the adversary immediately out of the combat?

DYNAMICS OF STABBING AND INCISING WOUNDS

Death from stabbing and incising ("cutting" or "slashing") wounds is mainly brought about through five mechanisms: massive hemorrhage (exsanguination), air in the bloodstream (air embolism), suffocation (asphyxia), air in the chest cavity (pneumothorax), and infection. Of these, exsanguination is the most common, with hemorrhaging confined principally to the body cavity because stabbing wounds tend to close after the weapon is withdrawn. The amount of blood loss necessary to disable totally an individual varies widely and may range from as little as one-half to as much as three liters.

To reach a vital area it is first necessary to pass the blade through the body's external covering and whatever else lies between, and with regard to techniques in swordsmanship, an important consideration is the degree of force required to pass through intervening structures in order to reach vital structures with a sword-thrust or cut. In France, in 1892, this issue was raised during a trial conducted as a consequence of a duel fought between the Marquis de Mores and a Captain Meyer. The question arose on account of an accusation that the weapons used in the duel were "too heavy." While two physicians, Drs. Faure and Paquelin, testified that it did not require great strength to inflict a wound similar to that which took Captain Meyer's life, there was some difference of opinion expressed by a number of fencing masters called to testify on the matter of acceptable weights of weapons, and the force required to employ them in the delivery of a fatal thrust.

Even today, prosecutors trying homicide cases involving death by stabbing will sometimes attempt to convince juries that a deeply penetrating stab wound serves as an indicator of murderous intent by virtue of the great force required to inflict such wounds. It is generally accepted today among experts of forensic medicine, however, that the force requisite to inflict even a deeply penetrating stab wound is minimal. This opinion would seem to be supported by the experience of a stage actor who inadvertently stabbed a colleague to death during a stage performance of Shakespeare's play, Romeo and Juliet. The unlucky young man delivered a thrust at the very moment his vision was inadvertently obscured by a member of the cast. Although he claimed to have felt no resistance, a post mortem examination revealed that he had penetrated the chest of the victim to a depth of eighteen centimeters.

Except for bone or cartilage which has become ossified, it is the skin that offers the greatest resistance to the point of a blade. In fact, once the skin is penetrated, a blade may pass, even through costal cartilage, with disquieting ease. Generally, of the factors governing the ease of entry, the two most important are the sharpness of the tip of the blade and the velocity with which it contacts the skin. While the mass of the weapon is a factor in penetration, the velocity of the blade at the moment of contact is of greater importance, since the force at impact is directly proportional to the square of the velocity of the thrust.

Unlike injuries inflicted with pointed weapons, the depth of cutting wounds, produced by the edges of weapons like the sabre or rapier, is governed by a somewhat different set of dynamics which include the radial velocity of the blade at impact, its mass, the proficiency with which the blade is drawn across the body upon contact, and the distance over which the force of the cut is distributed. The greatest depth of penetration in many of these wounds is found at the site where, with maximum force, the blade first makes contact. As the edge is pushed or drawn, the force of the cut dissipates and the blade tends to rise out of the wound as it traverses the body. In the case of cutting wounds directed to the chest, the total force required to reach the interior of the chest is greater than that for a point thrust, not only because the force of the stroke is distributed across the length of the cut, but also because of the likelihood that the blade will encounter greater resistance afforded by the underlying ribs and the breastbone (sternum).

next time, Wounds to the Heart...